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Abstract—Precise segmentation of objects is an important
problem in tasks like class-agnostic object proposal generation
or instance segmentation. Deep learning-based systems usu-
ally generate segmentations of objects based on coarse feature
maps, due to the inherent downsampling in CNNs. This leads
to segmentation boundaries not adhering well to the object
boundaries in the image. To tackle this problem, we introduce
a new superpixel-based refinement approach1 on top of the
state-of-the-art object proposal system AttentionMask. The re-
finement utilizes superpixel pooling for feature extraction and
a novel superpixel classifier to determine if a high precision
superpixel belongs to an object or not. Our experiments show
an improvement of up to 26.0% in terms of average recall
compared to original AttentionMask. Furthermore, qualitative
and quantitative analyses of the segmentations reveal significant
improvements in terms of boundary adherence for the proposed
refinement compared to various deep learning-based state-of-the-
art object proposal generation systems.

I. INTRODUCTION

Object proposal generation, the class-agnostic generation
of object candidates in images, is a vital part of many
modern object detection or instance segmentation systems
to reduce the search space [1]–[4]. Depending on the task,
object candidates are either bounding boxes [5], [6] or pixel-
precise segmentation masks [7]–[10]. In contrast to instance
segmentation, object proposal generation is class-agnostic and
thus not limited to the classes seen in training. This leads to a
more general approach for discovering objects in images [11].

Since the advent of deep learning, object proposal genera-
tion made big strides [5]–[10]. However, deep learning systems
easily miss fine details of objects. This is due to the nature of
convolutional neural networks (CNNs) subsampling the input
to generate semantically rich features. While usually not rele-
vant in classification, the loss of fine details is very important
for tasks like pixel-precise object proposal generation. Here,
detailed contours like the airplane tail or the wheels in Fig. 1
are usually lost. This is especially a problem for larger objects
as those suffer most from downsampling effects [9], [10].

To tackle this problem, multiple approaches were presented
in semantic segmentation or salient object detection. Applying
a conditional random field (CRF) as post-processing [12]–[14]
is a simple solution. Similarly, an encoder-decoder architecture

1Code is available at: https://www.inf.uni-hamburg.de/spxrefinement
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Fig. 1. Example of an object proposal without (a) and with (b) refined
contours after applying our superpixel-based refinement. Note the precise
segmentation of fine details after applying our refinement.

can upsample the coarse results utilizing guidance from earlier
feature maps [13]–[16]. Those are well-established techniques
in salient object detection [12], [15] and semantic segmenta-
tion [13], [14], [16]. However, object proposal generation is
different as individual segmentations are created for the object
proposals, which potentially overlap. A CRF would have to be
applied to every proposal and an encoder-decoder architecture
is only applicable by taking crops of the input image. Thus,
both options are computationally demanding [8], [17].

Other lines of work include dilated convolutions to generate
semantically rich features without downsampling [16], [18].
[19], [20] propose iterative adaptation of initial segmentations.
These techniques are mostly computationally demanding as
well and thus not applicable to hundreds of object proposals
generated by object proposal generation systems. Hence, a
refinement system is necessary that effectively captures details
of objects and shares computation between proposals to be ef-
ficient enough for application to hundreds of object proposals.

In classic computer vision, superpixels [21] are used to
reduce the number of basic entities in images. Subsequently,
this increases the efficiency, while retaining the relevant struc-
tures of images. Superpixels as a result of an oversegmentation
represent coherent regions of an image. Due to the non-lattice
structure of superpixel segmentations, it is difficult to integrate
superpixels naturally into CNNs [22]. However, [23]–[25]
already successfully applied superpixels in CNNs to aggregate
information across parts of feature maps.

In this paper, we therefore propose an end-to-end learned
superpixel-based refinement approach for object proposal gen-



Fig. 2. Overview of the proposed superpixel-based refinement on top of
AttentionMask [10]. Superpixel segmentations are generated and features are
extracted from the backbone network. The superpixel refinement creates fea-
ture vectors per superpixels based on the segmentations and a feature extractor.
The per-superpixel feature vectors are combined with the coarse results of
AttentionMask and classified for final, more precise object proposals.

eration systems. As visualized in Fig. 2, we utilize the coarse
proposal masks of the state-of-the-art object proposal genera-
tion system AttentionMask [10] and the highly accurate super-
pixels [26]. To combine both, we first apply superpixel pool-
ing. Inspired by [23]–[25], we extract per-superpixel features
from a backbone network that are shared between proposals.
Second, we sample superpixels in and around the coarse
object proposal masks for refinement. Finally, we propose a
new superpixel classifier to distinguish between superpixels
as part of an object or the background. The classifier decides
based on the pooled features and the coarse object proposal
masks roughly capturing objects. This leads to highly precise
results utilizing deep features. Quantitative results on the LVIS
dataset [27], which has more precise annotations compared
to the MS COCO dataset [28], indicate the effectiveness of
our superpixel-based refinement. Additionally, qualitative and
quantitative results show a significantly improved boundary
adherence compared to state-of-the-art systems.

Our main contributions are:
• Utilizing superpixel pooling in a shared and end-to-end

learned manner to extract rich features while maintaining
highly accurate segmentations capturing fine details.

• A superpixel classifier to distinguish foreground and
background superpixels based on pooled features and a
prior derived from coarse object proposals as guidance.

• Introducing a superpixel-based refinement approach that
can be easily integrated into object proposal generation
systems to increase the results by up to 26.0%.

II. RELATED WORK

In this section, we give an overview of related work in the
areas of object proposal generation and superpixels in CNNs.

1) Object Proposal Generation: Object proposal generation
as a new task was first introduced by [29]. [30] give a survey
of systems not using deep learning. In general, systems can
be distinguished by the type of proposals they generate. The
proposals are either bounding boxes [5], [6], [31], [32] or
pixel-precise segmentation masks [7]–[10], [34]–[36]. Systems
generating bounding boxes sample windows across the input

image and calculate an objectness score per window. The score
describes the likelihood of the window containing an object.
Additionally, the bounding box is refined from the initial
window. Both, hand-crafted [31], [32] and deep learning [5],
[6] systems exist. In contrast to those, we are working on pixel-
precise segmentation masks. This is more complex as not only
the four parameters of the bounding box have to be regressed
but a classification of each pixel or superpixel is necessary.

Pixel-precise object proposal generation systems mainly
started from grouping superpixels using hand-crafted features
[35], [36]. With the emergence of deep learning, superpixels
got abandoned from the systems as their integration into
the networks is non-trivial. Thus, most systems switched
to a window scoring approach [7]–[10]. DeepMask [7] and
SharpMask [8] process windows from an image pyramid and
generate a pixel-precise segmentation as well as an objectness
score per window. SharpMask in contrast to DeepMask uses an
encoder-decoder architecture to refine the initial segmentation.

FastMask [9] reduces the redundancy by generating a
feature pyramid within the network, thus extracting features
only once per image. From the feature pyramid, windows are
densely sampled and objectness scores as well as pixel-precise
segmentations are generated. Further increasing the efficiency
and improving the detection of small objects, Attention-
Mask [10] introduces a notion of attention. In AttentionMask,
only promising windows are sampled from the feature pyramid
to reduce computation and allow an additional pyramid level
for small objects. AttentionMask is the base for our proposed
superpixel-based refinement approach and is described in more
detail in Sec. III. All four approaches, however, suffer from
the downsampling in CNNs leading to coarse segmentations.

2) Superpixels in CNNs: Few approaches utilize superpix-
els for CNNs as the concepts are non-trivial to combine. This is
mainly attributed to the missing lattice structure in superpixel
segmentations. [22] circumvent the missing lattice structure
and create a vector per superpixel describing the differences
to all other superpixels in the image. Those vectors serve as
input to a CNN. [37] propose a Gaussian bilateral filtering on
superpixels to enforce proximate superpixels to have similar
output. In salient object detection, [38] and [39] generate the
saliency prediction per superpixel based on its surrounding.
However, different to our approach, they use superpixels only
to reduce the number of entities, not for pooling features.

More similar to us, [23]–[25], [40] utilize superpixel pool-
ing to generate feature representations per superpixel. Using
superpixel pooling, [23] aggregate information of similar
superpixels along a sequence of frames, while [24] capture
semantic units in weakly supervised semantic segmentation.
[25] and [40] use features from superpixels for classification
in semantic segmentation. However, our approach is different,
since we use superpixel pooling to generate refined, more
detailed segmentations in object proposal generation.

III. BASE FRAMEWORK

As mentioned in Sec. I, AttentionMask [10] is the base
for our refinement approach and therefore briefly described



here. Similar to FastMask [9], in AttentionMask the backbone
network processes an image only once yielding a feature
pyramid within the network. AttentionMask uses a ResNet-
50 [41] as backbone. The feature pyramid consists of 5 or 8
scales (Sn), as depicted in the upper part of Fig. 3, color-coded
in red. Here, n denotes the downscale factor with respect to the
input image and ranges from 8 to 128. These scales correspond
to different object sizes with S8 capturing small objects while
S128 captures large objects. Per scale, features are extracted
and a scale-specific objectness attention module (SOAM) is
introduced. The SOAMs are learned components that highlight
for each scale the locations of relevant objects within the
respective feature map. Consequentially, false positives and
the computational effort are reduced.

AttentionMask samples windows of fixed size from the fea-
ture pyramid at locations where the scale-specific objectness
attention of the corresponding SOAM is high. By sampling
fixed sized windows across feature maps of different scales,
objects of different sizes are detected. For each sampled
window the objectness is determined and the attentional head
generates a first rough estimation of the object’s location. The
localization is refined to a coarse pixel-precise segmentation
mask of size 40 × 40. Hence, the size of the mask is
independent of the object size in the input image. This process
is visualized in the upper right corner of Fig. 3. Note, that we
refer here to the AttentionMask8

128 model in [10]. However,
all subsequent steps can be carried out in combination with
the other models from [10] as well.

IV. METHOD

In this section, we introduce our novel superpixel-based
refinement approach on top of AttentionMask (see Sec. III),
visualized in Fig. 3. We start from the final proposals of
AttentionMask, which are coarse segmentation masks in
40 × 40 windows and apply the refinement per window, i.e.
per proposal. First, the scale Sn from which each window
originates is determined and the according segmentation is
chosen. Next, we crop the part of the superpixel segmen-
tation spatially corresponding to the window. The cropped
segmentation and the AttentionMask result are the input for
our superpixel pooling module, described in Sec. IV-A. The
superpixel pooling module calculates the average value of
the coarse segmentation mask across every superpixel within
the crop, coined mask prior. Furthermore, a feature extractor
generates per-scale feature maps from the backbone network.
Our superpixel pooling module uses these feature maps and
creates a feature vector for every superpixel of each scale’s
segmentation. To combine these two streams per window, we
propose a superpixel sampling module. The superpixel sam-
pling module concatenates for each superpixel of a window
the mask prior with the relevant superpixel features. Finally,
we propose a novel superpixel classifier (see Sec. IV-B) to
classify each superpixel based on this information as part of an
object or background. The final highly accurate pixel-precise
proposals are created using the superpixel segmentations and

the classification results. Sec. IV-C outlines details of this
integration into AttentionMask.

A. Superpixel Pooling and Sampling

The first major novelty of the proposed refinement approach
is our superpixel pooling module. It enables us to have an
output resolution that is largely independent of Attention-
Mask’s final segmentation resolution. Inspired by [23]–[25],
our superpixel pooling is a mixture of global average pooling
and standard n × n average pooling known from CNNs.
In superpixel pooling, the superpixels describe the areas for
pooling an input feature map. Thus, we pool one feature
vector per superpixel in a given segmentation. Similar to
the standard pooling, backpropagation through the superpixel
pooling module is possible. For this purpose, the gradients
are propagated back to the locations of the input feature map
corresponding to the superpixels.

As indicated in Fig. 3, we utilize our superpixel pooling
module twice in our superpixel-based refinement. First, the
module generates per-superpixel features based on feature
maps extracted from the backbone net. This is applied once
on each scale with a unique segmentation and feature map
per scale as visualized in the bottom part of Fig. 3, color-
coded in green. Second, visualized in the right part of Fig. 3,
we apply superpixel pooling to each of the AttentionMask
result windows using corresponding crops of the superpixel
segmentations. Thus, the windows that are coarsely segmented
on a 40 × 40 grid by AttentionMask are cropped from the
segmentations of the respective scales. The central part of
Fig. 3 depicts this process, color coded in yellow. Note that
the crops of the segmentations are larger (here: 80 × 80 to
1280 × 1280) to generate more precise segmentations. The
result of the second superpixel pooling step is a superpixelized
version of the AttentionMask results denoted as mask prior.
This prior helps to capture entire objects as [24] demonstrate.

Subsequently, our novel superpixel sampling module com-
bines the two streams of superpixel pooling. Per window of
the AttentionMask results, the superpixel sampling module
concatenates the mask prior and the corresponding superpixel
features for every superpixel within this window. The lower
right part of Fig. 3 visualizes this concatenation of the mask
prior (gray superpixels) and pooled superpixel features (bluish
superpixels). Finally, we concatenate the per window results of
the sampling across all windows to form one batch of super-
pixels for classification. Note, that the superpixel pooling of
features has to be applied only once per scale and superpixel.
However, the superpixel pooling of the mask prior has to be
applied to each result of AttentionMask individually.

B. Superpixel Classifier

As another major novelty, we propose a superpixel classifier
to distinguish between superpixels belonging to objects and
background. The classifier, located in the bottom right section
of Fig. 3, takes the result of the superpixel sampling module,
the concatenation of the mask prior and the pooled feature
vector per superpixel, as input. The architecture consists of



Fig. 3. Detailed view of our proposed superpixel-based refinement approach on top of AttentionMask [10]. We first apply AttentionMask to the input image,
generating coarse pixel-precise masks on 40 × 40 grids (red). In parallel, a highly accurate superpixel segmentation is generated per scale, which captures
fine details of objects (yellow). Based on the segmentations, we apply superpixel pooling to feature maps extracted from the backbone network (green). This
leads to per-superpixel feature-vectors. Next, we crop the respective parts of the superpixel segmentations for each AttentionMask result window and apply
superpixel pooling on the AttentionMask results. The superpixel sampling combines coarse results and superpixels by concatenating the per-superpixel average
of AttentionMask results (gray superpixels) and the per-superpixel features (bluish superpixels). Finally, all superpixels are classified and recombined for high
precision results. For clarity in this figure only four windows per scale are considered and the feature extractor generates only three features per superpixel.

TABLE I
ARCHITECTURES FOR THE PROPOSED SUPERPIXEL CLASSIFIER. THE

FIRST COLUMN INDICATES THE AMOUNT OF NEURONS PER
FULLY-CONNECTED LAYER. AR@n DENOTES THE AVERAGE RECALL FOR

THE FIRST n PROPOSALS.

Architecture AR@10 AR@100 AR@1000
512− 512− 512 0.160 0.296 0.382
1024− 1024− 1024 0.156 0.291 0.381
256− 256− 256 0.158 0.292 0.380
512− 512− 512− 512 0.156 0.288 0.377
512− 512 0.154 0.283 0.373

three fully-connected layers with 512 neurons and ReLU
activation each as well as a final fully-connected layer with
sigmoid activation (see Fig. 4). Compared to other structures
the proposed architecture is effective, as the results in Tab. I
reveal. The classifier processes the superpixels individually
without interaction between superpixels. All superpixels of a
scale that do not overlap with a window and therefore are
neither sampled nor classified are background for that window.

C. Integration into AttentionMask

To integrate our novel superpixel-based refinement into
AttentionMask, we first substitute the backbone network
from [10] for a ResNet-34 [41]. This is necessary as the

TABLE II
RESULTS OF THE PROPOSED REFINEMENT APPROACH USING FEATURES
FROM DIFFERENT RESNET-BLOCKS IN FEATURE EXTRACTION. AR@n

DENOTES THE AVERAGE RECALL FOR THE FIRST n PROPOSALS.

ResNet-block AR@10 AR@100 AR@1000
res1 0.158 0.292 0.377
res2 0.160 0.296 0.382
res3 0.156 0.292 0.380
res4 0.153 0.287 0.372

original model utilizes almost all the GPU memory and
thus does not allow for any refinement steps. Changing the
backbone leads to only a small degradation as the results in
Sec. VI-A indicate. Following [20], we utilize the output of the
res2-block to extract features from the backbone. Results using
features from other levels of the backbone (see Tab. II) justify
this decision. The rest of AttentionMask stays unchanged with
all added components learned end-to-end as detailed in Sec.V.

Outside the network we generate superpixel segmentations
of the input image with the approach of [26] (FH). FH
generates superior results compared to other segmentation
approaches (see Sec. VI-B1). The segmentations differ in the
number of superpixels between scales. As FH does not allow
to explicitly set a number of superpixels, we optimize the free



Fig. 4. Architecture of our proposed superpixel classifier with fully-connected layers denoted as FC-layer. The input is a batch of superpixels across different
windows and scales (variations of blue). For each superpixel, it consists of one mask prior value (gray) from the AttentionMask result and 512 learned features
(bluish) extracted from the res2-block of the backbone network. As a result the classifier determines if a superpixel is part of an object (white) or part of the
background (black).

parameter in FH. For best performance, we generate roughly
8000 superpixels for S8 and 500 superpixels for S128 with
regular intermediate steps for the intermediate scales.

After superpixel pooling, sampling and classification, we
recombine the results per window to form high precision
segmentation masks that capture even fine object details. These
masks are further post-processed in three steps. First, bilateral
filtering [42] is applied on the level of superpixels using
color information. Second, we apply morphological opening
and closing. Closing removes small holes within superpixels.
Opening eliminates segmentation artifacts like thin protuber-
ances extending from the superpixel boundaries, which are
frequently occurring in FH segmentations. Finally, we apply
non-maximum suppression to the set of proposals with a high
intersection over union of 0.95. This leads to the removal of
near duplicates, which are more likely to occur when using
superpixels as the number of basic entities is smaller.

V. IMPLEMENTATION DETAILS

This section presents technical details of our overall object
proposal generation system. In terms of trainable modules,
AttentionMask is mainly extended by the novel superpixel
classifier (Sec. IV-B). Other components like superpixel pool-
ing or sampling do not learn features as they only restructure
the input. Another component, which learns features, is the
feature extractor. The feature extractor comprises a 1 × 1
convolution on the feature maps extracted from the backbone.

To train the superpixel classifier and in turn the feature
extractor as well, we use cross entropy loss as the loss
function. We integrate this new superpixel classification loss
Lspx into the overall loss function L of AttentionMask by
adding it with a weight factor wspx (here wspx = 1):

L =wobjnLobjn + wahLah + wsegLseg+

watt

∑
n

Lattn + wspxLspx.
(1)

Lobjn,Lah,Lseg , and Lattn denote the losses from [10] for
the objectness score, the attentional head, the pixel-precise
segmentation and the SOAMs of the different scales Sn with
weights respectively. Therefore, the entire system can be
trained end-to-end in one step. For training, similar to [7]–
[10], we use the training set of the MS COCO dataset [28]. The
backbone network is initialized with ImageNet weights [41]
while the rest of the system is learned from scratch. We use
SGD as the optimizer and an initial learning rate of 0.0001.

Selecting the ground truth for the superpixel classifier is
non-trivial since the annotations of the MS COCO dataset [28]

used for training are pixel-precise. Therefore, some superpixels
cover both object and non-object pixels. To solve this, we
generate a set of superpixels leading to an optimal intersection
over union (IoU) for every annotated object. For this purpose,
we start with a superpixel completely contained in the annota-
tion. If this does not hold true for any superpixel, we start from
the superpixel with the highest IoU with the annotated object.
Subsequently, we greedily add all superpixels that increase the
IoU between the annotated object and the set of superpixels.
The result is an optimal set of superpixels per annotation.

VI. EXPERIMENTS

In this section, we present qualitative and quantitative
results of our novel superpixel-based refinement approach.
In contrast to [7]–[10], we carry out the evaluation on the
very recent LVIS dataset [27]. The LVIS dataset contains
images from the MS COCO dataset’s test split [28] with more
accurate annotations. More accurate annotations are necessary
for evaluating our system, as it aims to recover fine details
of objects. An evaluation on the MS COCO dataset itself
is not conducted. However, [10] already showed the superior
performance of AttentionMask compared to other state-of-the-
art object proposal systems on the MS COCO dataset.

Following [8], [30], the results are reported in terms of
average recall (AR) for 10, 100 and 1000 proposals as well
as for small, medium and large objects. AR describes how
many annotated objects are found and how well those objects
are segmented. Note that all results and annotations are pixel-
precise masks. We compare our system to original Attention-
Mask [10] based on two different ResNets as backbone as
well as to DeepMask [7], SharpMask [8], and FastMask [9].
We also compare to MCG [34], a top-performing non deep
learning-based system [30]. Since not relying on deep learning,
MCG does not suffer from downsampling effects. Further
comparison to instance segmentation systems is not conducted
as those systems use class information for segmentation [3].

A. Results on the LVIS dataset

Tab. III shows the quantitative results on the LVIS dataset.
The numbers reveal that our proposed system outperforms
all other systems. Compared to AttentionMask using the
same backbone network the AR@100 improves by 0.021
with improvements across all scales of objects as ARS@100,
ARM@100 and ARL@100 indicate. Compared to Atten-
tionMask with the more powerful ResNet-50 backbone and
FastMask, the improvements in AR@100 are 0.017 (Atten-
tionMask) and 0.045 (FastMask). Hence, our system is good
enough to overcome the less powerful backbone. DeepMask



TABLE III
RESULTS ON THE LVIS DATASET USING AVERAGE RECALL (AR). ARS , ARM AND ARLDENOTE RESULTS ON SMALL, MEDIUM AND LARGE OBJECTS.

Method Backbone AR@10 AR@100 AR@1000 ARS@100 ARM@100 ARL@100
MCG [34] - 0.048 0.131 0.237 0.031 0.204 0.462
DeepMask [7] ResNet-50 0.069 0.147 0.214 0.014 0.314 0.430
SharpMask [8] ResNet-50 0.073 0.154 0.229 0.014 0.327 0.460
FastMask [9] ResNet-50 0.069 0.161 0.256 0.055 0.296 0.386
AttentionMask [10] ResNet-50 0.073 0.189 0.284 0.081 0.312 0.446
AttentionMask [10] ResNet-34 0.076 0.185 0.271 0.083 0.305 0.423
Ours ResNet-34 0.092 0.206 0.290 0.092 0.340 0.473

Image FastMask [9] AttentionMask [10] (ResNet-50) Ours Ground Truth

Fig. 5. Qualitative results of FastMask [9], AttentionMask [10] and our approach on the LVIS dataset. The filled colored contours denote found objects, while
not filled red contours denote missed objects. The red arrows highlight locations showing the strength of our proposals adhering well to object boundaries
even in complex scenarios.

and SharpMask both show very competitive results on large
objects as indicated by the ARL@100 results. This is mainly
attributed to fewer downsampling steps in these systems that
depend on an image pyramid. However, our proposed system
still outperforms DeepMask and SharpMask on large objects
and shows significant improvement in AR@100 across all
scales of objects (+0.059 and +0.052). Interestingly, the
non deep learning-based method MCG also produces very
competitive results on ARL@100 as no downsampling is
applied. However, the results on medium and small object are
much worse compared to our approach.

Qualitative results for the top-performing systems from
Tab. III are shown in Fig. 5. It is clearly visible that across the
different scenarios the results of our proposed system adhere
very well to the object boundaries. For instance in the example
in the first row, our result precisely captures fine details like
the tail of the sheep, the visible front leg and the ears. In
contrast, AttentionMask and FastMask generate rather blob
like proposals containing a significant amount of background.
The second row shows examples for very small objects with
complex boundaries, which are still precisely segmented by
our system. The results in the third and fourth row depict



TABLE IV
COMPARISON OF THE BEST PROPOSALS PER IMAGE AS SEGMENTATIONS

USING SEGMENTATION MEASURES BOUNDARY RECALL (BR) AND
UNDERSEGMENTATION ERROR (UE) ON THE LVIS DATASET.

Method Backbone BR↑ UE↓
MCG [34] - 0.685 0.073
DeepMask [7] ResNet-50 0.488 0.087
SharpMask [8] ResNet-50 0.561 0.080
FastMask [9] ResNet-50 0.510 0.084
AttentionMask [10] ResNet-50 0.568 0.070
AttentionMask [10] ResNet-34 0.547 0.075
Ours ResNet-34 0.681 0.068

examples of humans in complex scenarios with spread legs
and arms. Our proposals fit much better to the arms and
legs capturing mostly the entire limbs. Note that the ground
truth for the image in the forth row annotates the wet suits
rather than the humans itself. The final row depicts an image
with a highly cluttered environment where our system is still
able to refine the proposals well especially around the corners
of the objects. Despite the strong overall performance, this
example also shows a minor failure case for our system as the
overlapping proposals for the nearby monitors indicate. Other
typical sources of errors are usually related to the segmentation
and occur in areas with low contrast or high texture.

Further analyzing the accuracy of the segmentations, we use
the typical segmentation metrics boundary recall (BR) and un-
dersegmentation error (UE). To generate segmentations from
annotations, we join per image the binary ground truth seg-
mentations. For the results we join the binary segmentations of
the best proposal per annotated object for each system. Thus,
we create one proposal segmentation per image and system as
well as one ground truth segmentation per image. The results
on this segmentation-based evaluation are presented in Tab. IV.
Our proposed approach outperforms all deep learning based
systems in terms of BR and UE. The significant improvement
in terms of BR (between 39.5% and 19.9%) indicates the
stronger boundary adherence of our results. Therefore, our
system segments more object boundaries significantly more
precise. The results are also in line with the qualitative results
in Fig. 5. Compared to the non deep learning-based approach
MCG, our results are on a similar level in terms of BR and
better in terms of UE. Thus, we are able to combine the highly
accurate segmentations of the non deep learning systems with
the strong overall performance of the deep learning systems.

B. Ablation Studies

In addition to the ablation studies in Sec. IV-B and
Sec. IV-C, we show the influence of the number of super-
pixels, the segmentation method and the post-processing steps
(Sec. IV-C) to further analyze our proposed refinement. Except
for the post-processing, all ablation studies were conducted on
a validation set of MS COCO dataset with a reduced model
following [9], [10]. The reduced model contains only five
scales and no post-processing to speed up training and testing.

TABLE V
RESULTS OF DIFFERENT SEGMENTATION METHODS AND NUMBERS OF

SUPERPIXELS USED IN THE REFINEMENT APPROACH. NUMBERS OF
SUPERPIXELS ARE APPROXIMATED ACROSS THE VALIDATION DATASET.

Segmentation #Superpixels AR@10 AR@100 AR@1000
FH [26] 8000− 500 0.160 0.296 0.382
FH [26] 4000− 250 0.151 0.282 0.370
FH [26] with GT 8000− 500 0.182 0.345 0.462
FH [26] with GT 4000− 250 0.198 0.385 0.527
ETPS [44] 8000− 500 0.157 0.294 0.377
ERS [45] 8000− 500 0.143 0.278 0.368
SEEDS [46] 8000− 500 0.148 0.269 0.344
SLIC [43] 8000− 500 0.137 0.267 0.356

TABLE VI
RESULTS OF THE PROPOSED REFINEMENT APPROACH USING DIFFERENT

POST-PROCESSING STEPS ON THE LVIS DATASET.

Post-processing AR@10 AR@100 AR@1000
none 0.076 0.184 0.276
bilateral filtering 0.079 0.191 0.288
+ opening 0.079 0.192 0.292
+ closing 0.079 0.193 0.293
+ near duplicate removal 0.092 0.206 0.290

1) Influence of Segmentation: First, we evaluate the number
of superpixels per scale with the used segmentation method
FH [26]. Compared to the setup presented in Sec. IV-C using
approximately 8000 to 500 superpixels per scale, a reduction
by the factor two does not improve the results (see Tab. V).
However, if we add ground truth edges to the segmentations a
coarser segmentation is beneficial. This indicates that a strong
oversegmentation is not helpful. Further increasing the number
of superpixels is impossible due to memory constrains.

Similar conclusions can be drawn from the results of differ-
ent segmentation methods. We compare the FH segmentation
to the popular SLIC [43] method as well as ETPS [44],
ERS [45] and SEEDS [46]: the top 3 methods in the superpixel
benchmark of [47]. All four methods show inferior results
compared to FH (see Tab. V). This correlates with a higher
oversegmentation error (up to +17.6%) that those methods ex-
hibit as they partition the image in rather regular superpixels of
similar size. Thus, even highly uniform objects are artificially
split into many pieces that have to be merged later on.

2) Post-processing of Superpixel Results: We further ana-
lyze the influence of the three step post-processing, described
in Sec. IV-C. Tab. VI shows the results without post-processing
and step-wise added post-processing on the LVIS dataset.
Overall, the results in terms of AR are increased by 5.1% for
AR@1000 and up to 21.1% for AR@10 with a positive effect
of each post-processing step. Most important are the bilateral
filtering and the duplicate removal. Especially the duplicate
removal shows a strong increase in terms of AR@10 (+16.5%)
compared to only applying the other two post-processing steps.
This indicates a rather large number of duplicates or near
duplicates in the original results due to the use of superpixels.



VII. CONCLUSION

In this paper we address the problem of imprecise object
segmentations due to downsampling in CNN-based object pro-
posal generation systems. To tackle the problem, we presented
a superpixel-based refinement approach on top of the state-of-
the-art class-agnostic object proposal generation system Atten-
tionMask. Our refinement utilizes highly accurate superpixel
segmentations, superpixel pooling and a novel superpixel clas-
sifier to enhance the initial results. The experiments revealed
improvements of up to 26.0% for our overall system on
the LVIS dataset against original AttentionMask with further
improvements compared to other state-of-the-art systems. We
also showed the superiority of our proposals in terms of
segmentation measures boundary recall (max. +39.5%) and
undersegmentation error (max. +23.0%) compared to state-
of-the-art systems. In combination with the qualitative results,
this indicates the strength of our proposals adhering to object
boundaries. Ablation studies on the segmentation methods
and the number of superpixels reveal the need for a highly
accurate segmentation with low oversegmentation error, thus
not artificially dividing uniform image areas.
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